Data-Adaptive Reduced-Dimension Robust Beamforming Algorithms
نویسندگان
چکیده
We present low complexity, quickly converging robust adaptive beamformers that combine robust Capon beamformer (RCB) methods and data-adaptive Krylov subspace dimensionality reduction techniques. We extend a recently proposed reduced-dimension RCB framework, which ensures proper combination of RCBs with any form of dimensionality reduction that can be expressed using a full-rank dimension reducing transform, providing new results for data-adaptive dimensionality reduction. We consider Krylov subspace methods computed with the Powers-of-R (PoR) and Conjugate Gradient (CG) techniques, illustrating how a fast CG-based algorithm can be formed by beneficially exploiting that the CGalgorithm diagonalizes the reduced-dimension covariance. Our simulations show the benefits of the proposed approaches.
منابع مشابه
Robust Rank Reduction Algorithm with Iterative Parameter Optimization and Vector Perturbation
In dynamic propagation environments, beamforming algorithms may suffer from strong interference, steering vector mismatches, a low convergence speed and a high computational complexity. Reduced-rank signal processing techniques provide a way to address the problems mentioned above. This paper presents a low-complexity robust data-dependent dimensionality reduction based on an iterative optimiza...
متن کاملLow-Complexity Robust Data-Adaptive Dimensionality Reduction Based on Joint Iterative Optimization of Parameters
This paper presents a low-complexity robust data-dependent dimensionality reduction based on a modified joint iterative optimization (MJIO) algorithm for reduced-rank beamforming and steering vector estimation. The proposed robust optimization procedure jointly adjusts the parameters of a rank-reduction matrix and an adaptive beamformer. The optimized rank-reduction matrix projects the received...
متن کاملRobust Krylov-Subspace Methods for Passive Sonar Adaptive Beamforming
Krylov-subspace methods, such as the multistage Wiener filter and conjugate gradient method, are often used for reduced-dimension adaptive beamforming. These techniques do not, however, allow for steering vector mismatch, which is typically present in many applications of interest, including passive sonar. Here, we discuss recently proposed robust methods that do allow for steering vector misma...
متن کاملDesign of Robust Adaptive Beamforming Algorithms Based on Low-Rank and Cross-Correlation Techniques
This work presents cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. Firstly, we construct a general linear equation considered in large dimensions whose solution yields the steering vector mismatch. Then...
متن کاملAdaptive Low-rank Constrained Constant Modulus Beamforming Algorithms using Joint Iterative Optimization of Parameters
This paper proposes a robust reduced-rank scheme for adaptive beamforming based on joint iterative optimization (JIO) of adaptive filters. The scheme provides an efficient way to deal with filters with large number of elements. It consists of a bank of full-rank adaptive filters that forms a transformation matrix and an adaptive reduced-rank filter that operates at the output of the bank of fil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1402.5691 شماره
صفحات -
تاریخ انتشار 2014